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Diffeomorphism Invariance Exact Sequences

Pullback

Let F N M be a map ofmanifolds and PEN

If
in IRM

m

Def F N M is Cat pen if a chart V 0

of N about p and V T of M about Flp s t FCU E V

and 4 F 4 is at p

F N M is C if it is at every PE N

Let F N M bea map Thepullback
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is defined so that
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Def Let F N M be C If F U V Y 9

and



w Σ ai indy n n dy h Σ asdy

then
Ftw Σ a d f y n n d fty h

where

dF natty

PQ.IE Ineth Ihapamim sm titanium
is the identitymap Item

11
F G G oF

Because F d doFit F 1km RN takes
closed forms to closedforms and exact forms to exact
forms
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It induces a map
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It is customary to write F also as F



Def A Cmap F N M is a diffeomorphism if Cmap
G M N called its inverse s t FOG In and GOF IN

Th A diffeomorphism F N M induces an isomorphis

F 1 M HIN in cohomology

PE Let G M N be the inverse of F
FOG 1 F G G oF 1Hpm
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Hence F is an isom

Example tan C E E IR is a diffeomorphism

Ex Anyopeninterval a b is diffeomorphic
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Ex Cohomologyof an openinterval I
I R in dego
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Thepullbackof WE R M doesnot necessarily have

compactsupport If F N M is a diffeomorphism then
F M 1 N is defined so

HIM is also a diffeomorphism invariant
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is exact at Vʰ if herfor imftp.t

Thesequence is exact if it is exact at Vʰ for all k

Def A
shortfa.it ffE gnexactseq

of theform

Exactat A keri in 0 0 i is injective

Exact at C in hero C j is surjective
Exact at B ini her j

th A B C 0 is exact

iff i is injective j is surjective and B A C

PI B kaj imj 1stisom th of linear algebra
B imi C exactness at B C

key ini and inj C
B A C exact at A A Alkei ini

Exercise

Exetsequered CochainComplexes

Def A cochaircomplex differentilomplex is a

sequence of vector spaces and linear maps
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s.t.dk dp i D kE2



Def HC Tender

Def If A d and B d are cochaincomplexes

a cochainmap 4 A B is a collectionof linear maps
Up A hez s t

Ah Aʰ
E am

Bh Bʰ

is commutative k

A cochainmap Q A B induces a linearmap
p Hk a Hʰ B

by 4 a Yea

Def A sequence of cochaincomplexes
0 a B E 0

where i j are cochainmaps is short exact if k
0 Ah Bʰ Ch

is ashortexactseq of vectorspaces

A shortexactseq of cochain complexes
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induces
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