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ABSTRACT. When a torus acts on a compact oriented manifold with isolated fixed points, the

equivariant localization formula of Atiyah–Bott and Berline–Vergne converts the integral of an

equivariantly closed form into a finite sum over the fixed points of the action, thus providing

a powerful tool for computing integrals on a manifold. An integral can also be viewed as a

pushforward map from a manifold to a point, and in this guise it is intimately related to the

Gysin homomorphism. This article highlights two applications of the equivariant localization

formula. We show how to use it to compute characteristic numbers of a homogeneous space

and to derive a formula for the Gysin map of a fiber bundle.

Many invariants in geometry and topology can be represented as integrals. For example,

according to the Gauss–Bonnet theorem, the Euler characteristic of a compact oriented surface

in R
3 is 1/2π times the integral of its Gaussian curvature:

χ(M) =
1

2π

∫

M
Kvol.

The Euler characteristic can be generalized to other characteristic numbers. For example, if

E is a complex vector bundle of rank r over a complex manifold M of complex dimension n,

and c1, . . . ,cr are the Chern classes of E , then the integrals
∫

M
c

i1
1 · · ·cir

r , where
r

∑
k=1

k · ik = n,

are the Chern numbers of E . Taking E to be the holomorphic tangent bundle T M of M, the

Chern numbers of T M are called the Chern numbers of the complex manifold M. They are

smooth invariants of M. The top Chern number
∫

M cn(T M) is the Euler characteristic χ(M).
In general, integrals on a manifold are notoriously difficult to compute, but if there is a torus

action on the manifold with isolated fixed points, then the equivariant localization formula

of Atiyah–Bott and Berline–Vergne converts certain integrals into finite sums over the fixed

points.

A homogeneous space is a space of the form G/H , where G is a Lie group and H is a closed

subgroup. We will first consider the following problem:

Problem 1. How does one compute an integral on a homogeneous space G/H?

Every Lie group has a maximal torus. Since the maximal tori in a Lie group are all conjugate

to one another, they all have the same dimension. The dimension of a maximal torus in a Lie
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group G is called the rank of G. The method outlined in this article applies when G is a compact

connected Lie group and H is a closed subgroup of maximal rank. In this case, a maximal

torus of H is also a maximal torus of G. The complex projective spaces CPn, the complex

Grassmannians G(k,Cn), and complex flag manifolds are all examples of such homogeneous

spaces.

To simplify the exposition, we will assume throughout that homology and cohomology are

taken with real coefficients. Cohomology with real coefficients is to be interpreted as singular

cohomology or de Rham cohomology, as the case may be. Suppose f : E → M is a continuous

map between compact oriented manifolds of dimensions e and m respectively. Then there is

an induced map f∗ : H∗(E)→ H∗(M) in homology, and by Poincaré duality, an induced map

He−∗(E)→ Hm−∗(M) in cohomology. This map in cohomology, also denoted by f∗, is called

the Gysin map. It is defined by the commutative diagram

Hk(E)
f∗

//

P.D. ≃

��

Hk−(e−m)(M)

P.D.≃

��

He−k(E)
f∗

// He−k(M),

When M is a point, the Gysin map f∗ : He(E)→ H0(pt) = R is simply integration. Thus, the

Gysin map generalizes integration. For a fiber bundle f : E → M, the Gysin map f∗ : Hk(E)→

Hk−(e−m)(M) is integration along the fiber; it lowers the degree by the fiber dimension e−m.

Problem 2. Derive a formula for the Gysin map of a fiber bundle f : E → M whose fibers are

homogeneous spaces.

In fact, our method solves Problem 2 for other fiber bundles as well; it suffices that the fibers

be equivariantly formal, as defined below.

Because this article is meant to be expository, we do not give complete proofs of most of the

results cited. For further details, proofs, and references, consult [7] and [8].
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1. THE FIXED POINTS OF A TORUS ACTION ON G/T

To apply the equivariant localization formula, we need a torus action on a manifold. In

fact, any action by a compact Lie group will do, because every compact Lie group contains a

maximal torus, and we can simply restrict the given action to that of a maximal torus.

For simplicity, I will assume that in the homogeneous space G/H , the closed subgroup H is

a maximal torus T in the Lie group G. The method of treating the general case is similar, but

the formulas are a bit more complicated.
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The torus T acts on G/T by left multiplication:

T ×G/T → G/T,

t · xT = txT.

Let us compute the fixed point set of this action:

xT is a fixed point ⇐⇒ t · xT = xT for all t ∈ T

⇐⇒ x−1txT = T for all t ∈ T

⇐⇒ x−1T x ⊂ T

⇐⇒ x ∈ NG(T ) = normalizer of T in G

⇐⇒ xT ∈ NG(T )/T.

The group W :=NG(T )/T is called the Weyl group of T in G and is well known from the theory

of Lie groups to be a finite reflection group. Thus, the action of T on G/T by left multiplication

has finitely many fixed points.

2. EQUIVARIANT COHOMOLOGY

To study the algebraic topology of spaces with group actions, one looks for a functor that

incorporates in it both the topology of the space and the action of the group. Let M be a

topological space on which a topological group G acts. Such a space is called a G-space. Equi-

variant cohomology is a functor from the category of G-spaces to the category of commutative

rings.

As a first candidate, one might try the singular cohomology H∗(M/G) of the orbit space

M/G. Consider the following two examples.

Example 2.1. The circle G = S1 acts on the 2-sphere M = S2 in R
3 by rotation about the z-

axis. Each orbit is a horizontal circle and the orbit space M/G is homeomorphic to the closed

interval [−1,1] on the z-axis. The cohomology H∗(M/G) is trivial.

Example 2.2. The group G = Z of integers acts on M = R by translations n · x = x+ n. The

orbit space M/G is the circle R/Z. The cohomology H∗(M/G) of the orbit space is nontrivial.

In the first example, the cohomology of the orbit space M/G yields little information about

the action. In the second example, H∗(M/G) provides an interesting invariant of the action.

An action of G on a space M is said to be free if the stabilizer of every point is the identity. One

difference between the two examples is that the action of S1 on S2 by rotation is not free—the

stabilizers at the north and south poles are the group S1 itself—while the action of Z on R by

translation is free. In general, when the action of G on M is not free, the quotient space M/G

may be problematical.

In homotopy theory there is a standard procedure for converting a nonfree action to a free

action. Suppose EG is a contractible space on which G acts freely. Then no matter how G acts

on the space M, the diagonal action of G on EG×M will be free:

(e,x) = g · (e,x) = (g · e,g · x) ⇐⇒ g · e = e and g · x = x

=⇒ g · e = e

=⇒ g = 1.
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Since EG is contractible, EG×M has the same homotopy type as M. Homotopy theorists call

the orbit space of EG×M under the free diagonal action of G the homotopy quotient MG of M

by G. The equivariant cohomology H∗
G(M) is defined to be the singular cohomology H∗(MG)

of the homotopy quotient, with whatever coefficient ring is desired. It can be shown that the

homotopy type of MG is independent of the choice of EG. Thus, the equivariant cohomology

H∗
G(M) is well defined.

From the theory of principal bundles, we know that a weakly contractible space EG on

which a topological group G acts freely is the total space of a universal principal G-bundle

EG → BG, a principal G-bundle from which any principal G-bundle can be pulled back. That

is, given any principal G-bundle P → M, there is a map f : M → BG such that P is isomorphic

to the pullback bundle f ∗EG.

The process of constructing from a universal principal G-bundle α : EG → BG and a left

G-space M the homotopy quotient MG = (EG×M)/G is called the Borel construction. We

denote by [e,x] the equivalence class in MG of (e,x) ∈ EG×M. It is easy to check that the

natural map MG → BG, [e,x] 7→ α(e), is a fiber bundle with fiber M and structure group G.

The inclusion of the fiber M into MG induces a homomorphism H∗(MG) → H∗(M) in coho-

mology. Hence, there is a canonical map H∗
G(M) → H∗(M) from equivariant cohomology to

ordinary cohomology. A cohomology class in H∗(M) in the image of this map is said to have

an equivariant extension.

A vector bundle π : V → M is said to be G-equivariant if V and M are left G-spaces and

π : V → M is a G-map such that for every g ∈ G and every fiber Vx, the map ℓg : Vx →Vgx is a

linear map.

There is one situation in which a cohomology class on M automatically has an equivariant

extension, namely when it is a characteristic class c(V ) of a G-equivariant vector bundle V →
M. In this case, the induced map VG → MG is a vector bundle with the same fiber as V → M

and the equivariant characteristic class cG(V ) is defined to be

cG(V ) := c(VG) ∈ H∗
G(M).

The commutative diagram

V
�

�

//

��

VG

��

M
�

�

j
// MG

shows that the bundle V → M is the restriction of VG → MG to M; i.e., if j : M → MG is the

inclusion, then V = j∗(VG). By the naturality of characteristic classes,

c(V ) = c( j∗VG) = j∗c(VG) = j∗cG(V ).

Thus, the cohomology class c(V ) has equivariant extension cG(V ).
In general, the canonical map H∗

G(M) → H∗(M) is neither surjective nor injective. If it is

surjective, then M is said to be G-equivariantly formal. A G-equivariantly formal space M is

then one in which every cohomology class in H∗(M) has an equivariant extension. It turns out

that any homogeneous space G/H , where H contains a maximal torus of G, is equivariantly

formal.
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Example 2.3. Any group G acts trivially on a point. The homotopy quotient of a point by G is

ptG = EG×G pt = EG/G = BG,

so the equivariant cohomology of a point is H∗(BG).

For any G-space M, the constant map M → pt induces a ring homomorphism H∗
G(pt) →

H∗
G(M), which shows that the equivariant cohomology ring H∗

G(M) has the structure of an

algebra over the ring H∗(BG).

Example 2.4. The circle S1 acts freely on the sphere S2n+1 with quotient CPn. Therefore, it

acts freely on the union S∞ =
⋃∞

n=1 S2n+1 with quotient CP∞ =
⋃∞

n=1CPn. Since the homotopy

groups πk(S
∞) vanish for all k, by Whitehead’s theorem, S∞ is contractible. Thus, ES1 = S∞

and BS1 = CP∞, and

H∗
S1(pt) = H∗(BS1) = H∗(CP∞) = R[u].

3. EQUIVARIANT FORMS

Just as the singular cohomology with real coefficients of a manifold can be computed using

differential forms (de Rham’s theorem), the equivariant cohomology of a manifold with a

group action can be computed using equivariant differential forms (Cartan’s theorem).

Suppose a Lie group G acts on a manifold M. Fix a basis B1, . . . ,Bm for the Lie algebra g,

and let v1, . . . ,vm be the dual basis for g∨. A function α : g→ Ω(M) is said to be polynomial

if it can be written as a polynomial in v1, . . . ,vm with coefficients that are C∞ forms on M:

α = ∑αIv
i1
1 · · ·vim

m , αI ∈ Ω(M).

For A ∈ g, the value of α at A is given by

α(A) = ∑αIv1(A)
i1 · · ·vm(A)

im , αI ∈ Ω(M).

The group G acts on g by the adjoint representation and on Ω(M) by the pullback: g ·ω =
ℓ∗

g−1ω . A G-equivariant form on M is a polynomial map α : g → Ω(M) G-equivariant with

respect to these actions:

α
(
(Adg)A

)
= ℓ∗g−1α(A)

for all g ∈ G and A ∈ g. If G is a torus T , then the adjoint action is trivial and a T -equivariant

form is a polynomial in v1, . . . ,vm with T -invariant forms on M as coefficients:

α = ∑αIv
i1
1 · · ·vim

m , αI ∈ Ω(M)T .

Each element A ∈ g gives rise to a vector field A on the G-manifold M, called a fundamental

vector field, by

Ap =
d

dt

∣
∣
∣
∣
t=0

e−tA · p for p ∈ M.

Then g acts on Ω(M) by ιAω := ιAω for A ∈ g and ω ∈ Ω(M). Let ΩG(M) be the set of G-

equivariant forms on M. It is an algebra over R equipped with an operator dG whose square is

zero, called the Cartan differential, given by

(dGα)(A) = d
(
α(A)

)
− ιA

(
α(A)

)
for all A ∈ g.



6 LORING W. TU

In terms of the basis B1, . . . ,Bm for g and the dual basis v1, . . . ,vm for g∨, we may write A =

∑vi(A)Bi and

(dGα)(A) =∑v1(A)
i1 · · ·vm(A)

im dαI −∑vi(A)ιBi
v1(A)

i1 · · ·vm(A)
imαI .

Hence,

dGα =∑v
i1
1 · · ·vim

m dαI −∑viιBi
v

i1
1 · · ·vim

m αI

= d
(

∑vIαI

)
−∑viιBi

(

∑vIαI

)

= dα −∑viιBi
α .

To integrate an equivariant form, one simply integrates its coefficients:
∫

M
∑αIv

I = ∑
(∫

M
αI

)

vI .

The integrals
∫

M ω on a manifold M of dimension n that are amenable to computation using

the equivariant localization formula are integrals of differential n-forms that have equivariantly

closed extensions ω̃ :

ω̃ = ω +∑αIv
I , dGω̃ = 0.

For dimension reasons,

degαI = n−2∑ |I|< n,

so that ∫

M
ω̃ =

∫

M
ω +∑

(∫

αI

)

vI =
∫

M
ω .

The equivariant localization formula then gives the integral
∫

M ω̃ as a finite sum.

4. LINE BUNDLES ON G/T AND BT

The quotient map G → G/T is a principal T -bundle. Recall that every principal T -bundle

is a pullback from the universal T -bundle ET → BT . A character of a torus T is a homomor-

phism γ : T → C
×, which can be viewed as an action of T on C. By the mixing construction,

we can associate to a character γ a complex line bundle Lγ := G×γ C on G/T and a complex

line bundle Sγ := ET ×γ C on BT . Since G → G/T is a pullback of ET → BT , the line bundle

Lγ is the pullback of Sγ by the classifying map G/T → BT . Left multiplication by elements of

T makes Lγ into a T -equivariant complex line bundle over G/T .

5. COHOMOLOGY CLASSES ON G/T AND BT

The first Chern class c1(Lγ) is a cohomology class of degree 2 on G/T . Choose a basis

χ1, . . . ,χℓ for the characters of T and let

yi = c1(Lχi
) ∈ H2(G/T ), ui = c1(Sχi

) ∈ H2(BT ).

The computation of an integral over G/T using the equivariant localization formula is made

possible by the happy fact that the cohomology ring of G/T is generated by the yi. As charac-

teristic classes of T -equivariant bundles, these Chern classes automatically have equivariantly

closed extensions, namely, the equivariant Chern classes, so the integrals of monomials in the

Chern classes can be calculated using the equivariant localization formula.
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If T =

ℓ times
︷ ︸︸ ︷

S1 ×·· ·×S1, then its classifying space is

BT = BS1 ×·· ·×BS1

= CP∞ ×·· ·×CP∞.

By the Künneth formula, the cohomology ring of BT is

H∗(BT ) =R[u1, . . . ,uℓ].

6. THE ACTION OF THE WEYL GROUP ON THE POLYNOMIAL RING H∗(BT )

Let NG(T ) be the normalizer of T in G. Recall that the Weyl group of T in G is

W :=WG(T ) = NG(T )/T.

Given a principal T -bundle X → X/T , there is always an action of the Weyl group W on the

base X/T by

(xT )w = xwT.

Hence, W acts on the base space BT = ET/T of the universal bundle ET and there is an

induced action on the polynomial ring H∗(BT ) = R[u1, . . . ,uℓ].

7. THE COHOMOLOGY RING OF G/T

Let R be the polynomial ring

R = R[y1, . . . ,yℓ]≃ R[u1, . . . ,uℓ].

The Weyl group W acts on R, as explained in Section 6. Let (RW
+ ) be the ideal generated by the

invariant polynomials of positive degree.

Theorem 5 ([4, Prop. 26.1, p. 190], [7, Th. 5, p. 190]). The cohomology ring of G/T is

H∗(G/T ) =
R

(RW
+ )

=
R[y1, . . . ,yℓ]

(R[y1, . . . ,yℓ]
W
+ )

.

8. THE EQUIVARIANT LOCALIZATION FORMULA

Suppose a torus acts smoothly on a manifold M with isolated fixed points and ω̃ is an

equivariantly closed form. Let ip : {p} → M be the inclusion of a point. It induces a map

(ip)T : {p}T →MT of homotopy quotients and correspondingly a restriction map (ip)
∗
T : H∗

T (M)→
H∗

T (p). To simplify the notation, we will write (ip)
∗
T as i∗p. Then the equivariant localization

formula of Atiyah–Bott [2] and Berline–Vergne [3] is the following.

Theorem 6 (Equivariant localization formula).

∫

M
ω̃ = ∑

p∈MT

i∗pω̃

eT (νp)
,

where νp is the normal bundle of p in M and eT (νp) is the equivariant Euler class of νp.
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9. COMPUTING INTEGRALS ON G/T

Since H∗(G/T ) is generated by y1, . . . ,yℓ, a cohomology class of degree n := dimG/T is a

homogeneous polynomial f (y1, . . . ,yℓ) of degree n/2 in the variables y1, . . . ,yℓ. Because the

yi are Chern classes of equivariant T -bundles, they all have equivariantly closed extensions ỹi.

Then
∫

G/T
f (y1, . . . ,yℓ) =

∫

G/T
f (ỹ1, . . . , ỹℓ), (9.1)

which can be computed as a finite sum by the equivariant localization formula:

∫

G/T
f (ỹ1, . . . , ỹℓ) = ∑

w∈W

i∗w f (ỹ)

eT (νw)
, (9.2)

where the sum is taken over the Weyl group W of T in G. To evaluate this sum, it suffices

to know the restriction of f (ỹ) to a fixed point w ∈ W and the equivariant Euler class of the

normal bundle of w in G/T . This is worked out in [7]:

Restriction formula [7, Prop. 10]. Let χ1, . . . ,χℓ be a basis of the characters of T , Lχi
=

G×χi
C the associated complex line bundles over G/T , and Sχi

= ET ×χi
C the associated

complex line bundles over the classifying space BT . If ỹi = cT
1 (Lχi

) and ui = c1(Sχi
), then

i∗wỹi = w ·ui. (9.3)

Euler class formula [7, Prop. 13]. The equivariant Euler class of the normal bundle νw at a

fixed point w ∈W of the left action of T on G/T is

eT (νw) = w ·

(

∏
α∈∆+

c1(Sα )

)

, (9.4)

where ∆+ is a choice of positive roots for T in G.

Putting together (9.1), (9.2), (9.3), (9.4), we obtain a formula for an integral over G/T as a

finite sum:
∫

G/T
f (y1, . . . ,yℓ) = ∑

w∈W

w · f (u)

w ·
(

∏α∈∆+ c1(Sα)
) .

10. CHERN NUMBERS ON A GRASSMANNIAN

Using the same method, we can calculate integrals over G/H , where G is a compact Lie

group and H is a closed subgroup containing a maximal torus of G. For the complex Grass-

mannian G(k,Cn), we find the following Chern number formula:

Theorem 7. If S is the tautological subbundle over G(k,Cn), then

∫

G(k,Cn)
c1(S)

m1 · · ·ck(S)
mk =∑

I

∏k
r=1 σr(ui1 , . . . ,uik)

mr

∏i∈I ∏ j∈J(ui −u j)
, (10.1)

where ∑mr = k(n−k), I runs over all multi-indices 1≤ i1 < · · ·< ik ≤ n, J is its complementary

multi-index, and σr is the rth elementary symmetric polynomial.
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11. A CHERN NUMBER ON CP2

One of the surprising features of the localization formula is that although the right-hand side

of (10.1) is apparently a sum of rational functions of u1, . . . ,un, the sum is in fact an integer.

Example. As an example, we compute a Chern number on CP2 = G(1,C3). The real

cohomology of CP2 is H∗(CP2) = R[x]/(x3), generated by x = c1(S
∨
) = −c1(S), where S is

the tautological subbundle on CP2. By (10.1),

∫

CP2
x2 =

∫

G(1,C3)
c1(S)

2 =
3

∑
i=1

u2
i

∏ j 6=i(ui −u j)

=
u2

1

(u1 −u2)(u1 −u3)
+

u2
2

(u2 −u1)(u2 −u3)
+

u2
3

(u3 −u1)(u3 −u2)
,

which simplifies to 1, as expected.

12. MOTIVATION FOR STUDYING THE GYSIN MAP

In enumerative geometry, to count the number of objects satisfying a set of conditions, one

method is to represent the objects satisfying each condition by cycles in a parameter space M

and then to compute the intersection of these cycles in M. When the parameter space M is a

compact oriented manifold, by Poincaré duality, the intersection of cycle classes in homology

corresponds to the cup product in cohomology. Sometimes, a cycle B in M is the image f (A)
of a cycle A in another compact oriented manifold E under a map f : E → M. In this case the

homology class [B] of B is the image f∗[A] of the homology class of A under the induced map

f∗ : H∗(E)→ H∗(M) in homology, and the Poincaré dual ηB of B is the image of the Poincaré

dual ηA of A under the Gysin map.

There are some classical formulas for the Gysin map of fiber bundles, obtained using various

methods depending on what the fiber is. For example, for a projective bundle f : P(E)→ M,

where E → M is a vector bundle, if OP(E)(1) denotes the dual of the tautological subbundle

over P(E), then

H∗
(
P(E)

)
= H∗(M)[x]/I,

where x = c1

(
OP(E)(1)

)
and I is an ideal in H∗(M)[x]. The formula for the Gysin map [1,

Eq. 4.3, p. 318] is

f∗

(
1

1− x

)

=
1

c(E)
.

13. HOMOTOPY QUOTIENTS AS UNIVERSAL FIBER BUNDLES

Surprisingly, the equivariant localization formula provides a systematic method for comput-

ing the Gysin map of a fiber bundle. It is based on the fact that the homotopy quotient FG is the

total space of a universal fiber bundle with fiber F and structure group G. Let E → M be a fiber

bundle with fiber F and structure group G. Associated to E is a principal G-bundle P → M

such that E is the associated bundle E = P×G F .
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The classifying map h of the principal bundle P → M in the diagram

P

��

// EG

��

M
h

// BG

induces a map of fiber bundles

E = P×G F

f

��

h // EG×G F

πG

��

M
h

// BG.

= FG

(13.1)

Moreover, since P is isomorphic to h∗(EG), there are bundle isomorphisms

E = P×G F ≃ h∗(EG)×V F ≃ h∗(EG×G F) = h∗FG.

Thus, FG can be viewed as a universal fiber bundle with fiber F and structure G from which all

fibers bundles with fiber F and structure group G can be pulled back.

14. TWO MAIN IDEAS

In this section we isolated the two main ideas for evaluating the Gysin map f∗ : H∗(E)→
H∗(M). Recall that a G-space F is said to be equivariantly formal if the canonical map

H∗
G(F) → H∗(F) is surjective. If F is equivariantly formal, then by the Leray–Hirsch theo-

rem the cohomology classes on E are generated by pullbacks f ∗a of classes a from M (“basic

classes”) and pullbacks h∗b of classes b from the universal fiber bundle FG (“fiber classes”).

By the push-pull formula ([5, Prop. 8.3] or [6, Lem. 1.5]), we get from (13.1) the commutative

diagram

H∗(E)

f∗

��

H∗
G(F)

πG∗

��

h∗oo

H∗(M) H∗(BG).
h∗

oo

In other words,

f∗
(
( f ∗a)h∗b

)
= a f∗(h

∗b) = ah∗(πG∗b).

Thus, it is enough to know how to compute πG∗. This is the first main idea.

The second main idea is based on the fact that for any G-space X , where G is a compact Lie

group with maximal torus T and Weyl group W , we have

H∗
G(X) = H∗

T (X)W .

Thus, the G-equivariant cohomology of X injects into the T -equivariant comology of X . Al-

though the equivariant localization theorem is valid only for a torus action, we can apply it to

get πG∗ : H∗
G(F) → H∗(BG) for any compact, connected Lie group G. To see this, first note

that since

FT = (ET ×F)/T = (EG×F)/T
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and FG = (EG×F)/G, there is a natural projection map FT → FG with G/T as fiber. This map

fits into a commutative diagram

FG

πG

��

FT
oo

πT

��

ptG ptT .
oo

The push-pull formula gives

H∗
G(F)

πG∗

��

�

�

// H∗
T (F)

πT∗

��

H∗(BG) �
�

// H∗(BT ).

By [7, Lemma 4] both horizontal maps are inclusions. The equivariant localization formula

describes the map πT∗ as a finite sum. By the commutativity of the diagram, the same is true

of πG∗.

15. GYSIN FORMULA FOR A COMPLETE FLAG BUNDLE

For a fiber bundle with equivariantly formal fiber, the method outlined above produces a

formula for the Gysin homomorphism. As an example, consider the complete flag bundle

f : Fℓ(V )→ M associated to a complex vector bundle V → M of rank ℓ over a manifold M.

Put a Hermitian metric on V and let P be the principal bundle of unitary frames of V . Let

G be the unitary group U(ℓ) and T = U(1)×·· ·×U(1) (ℓ times), a maximal torus in G. Then

G/T = U(ℓ)/
(
U(1)×·· ·×U(1)

)
is a complete flag manifold and f : Fℓ(V ) = P×G (G/T )→

M is the associated complete flag bundle with fiber G/T .

By (13.1), there is a commutative diagram

Fℓ(V )

f

��

h // EG×G (G/T )

πG

��

M
h

// BG.

= (G/T )G

The upper right corner is

EG×G (G/T )≃ EG/T = ET/T = BT.

The push-pull formula then gives the commutative diagram of cohomology groups

H∗(G/T ) H∗
(

Fℓ(V )
)

f∗
��

oo H∗
G(G/T )

h∗oo

πG∗

��

H∗(M) H∗(BG).
h∗

oo

= H∗(BT )

Because G/T is equivariantly formal, the composite map in the top line of the diagram above is

surjective and so there are global classes on H∗
(

Fℓ(V )
)

that restrict to a basis on H∗(G/T ). By

the Leray–Hirsch theorem, the cohomology of Fℓ(V ) is generated as an H∗(M)-module by the

fiber classes h∗
(
b(u)

)
for b(u) ∈ H∗(BT ) = R[u1, . . . ,uℓ]. Since h∗ is a ring homomorphism,

h∗
(
b(u)

)
:= h∗

(
b(u1, . . . ,uℓ)

)
= b(h∗u1, . . . ,h

∗uℓ) = b(a1, . . . ,aℓ),
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where we write h∗ui = ai. By the projection formula,

f∗
(
( f ∗c)b(a)

)
= c f∗

(
b(a)

)
for c ∈ H∗(M).

Hence, the Gysin map for f : Fℓ(V ) → M is completely determined by f∗
(
b(a)

)
for fiber

classes b(a) ∈ H∗
(

Fℓ(V )
)
. Since f ∗ : H∗(M) → H∗

(
Fℓ(V )

)
is injective, f ∗ f∗

(
b(a)

)
deter-

mines f∗
(
b(a)

)
. In [8, Prop. 13], we obtain the following formula for the Gysin map of the

associated complete flag bundle.

Theorem 8. For the associated complete flag bundle f : Fℓ(V )→M of a vector bundle V →M,

if b(u) ∈ H∗(BT ) = R[u1, . . . ,uℓ] and ai = h∗ui, then b(a) ∈ H∗
(

Fℓ(V )
)

and

f ∗ f∗b(a) = ∑
w∈Sn

w ·

(
b(a)

∏i< j(ai −a j)

)

,

where Sn is the symmetric group on n letters and w ·b(a1, . . . ,an) = b
(
aw(1), . . . ,aw(n)

)
.
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