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Abstract

We give a generalization of the Atiyah–Bott–Berline–Vergne localization theorem for the equivariant cohomology of a torus
action. We replace the manifold having a torus action by an equivariant map of manifolds having a compact connected Lie group
action. This provides a systematic method for calculating the Gysin homomorphism in ordinary cohomology of an equivariant
map. As an example, we recover a formula of Akyildiz–Carrell for the Gysin homomorphism of flag manifolds.
© 2006 Elsevier B.V. All rights reserved.
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Suppose M is a compact oriented manifold on which a torus T acts. The Atiyah–Bott–Berline–Vergne localization
formula calculates the integral of an equivariant cohomology class on M in terms of an integral over the fixed point
set MT . This formula has found many applications, for example, in analysis, topology, symplectic geometry, and
algebraic geometry (see [2,6,8,12]). Similar, but not entirely analogous, formulas exist in K-theory [3], cobordism
theory [11], and algebraic geometry [7].

Taking cues from the work of Atiyah and Segal in K-theory [3], we state and prove a localization formula for a
compact connected Lie group action in terms of the fixed point set of a conjugacy class in the group. As an application,
the formula can be used to calculate the Gysin homomorphism in ordinary cohomology of an equivariant map. For
a compact connected Lie group G with maximal torus T and a closed subgroup H containing T , we work out as an
example the Gysin homomorphism of the canonical projection f :G/T → G/H , a formula first obtained by Akyildiz
and Carrell [1].

The application to the Gysin map in this article complements that of [12]. The previous article [12] shows how to
use the ABBV localization formula to calculate the Gysin map of a fiber bundle. This article shows how to use the
relative localization formula to calculate the Gysin map of an equivariant map.
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1. Borel-type localization formula for a conjugacy class

Suppose a compact connected Lie group G acts on a manifold M . For g ∈ G, define Mg to be the fixed point set
of g:

Mg = {x ∈ M | g · x = x}.
The set Mg is not G-invariant. The G-invariant subset it generates is⋃

h∈G

h · (Mg
) =

⋃
h∈G

Mhgh−1 =
⋃

k∈C(g)

Mk

where C(g) is the conjugacy class of g. This suggests that for every conjugacy class C in G, we consider the set MC

of elements of M that are fixed by at least one element of the conjugacy class C:

MC =
⋃
k∈C

Mk.

Then MC is a closed G-subset of M [3, footnote 1, p. 532]; however it may not be always smooth. From now on we
make the assumption that MC is smooth.

Suppose C = C(g) is the conjugacy class of an element g in G. Let T be a maximal torus of T containing g. Then
we have the following inclusions of fixed-point sets:

MG ⊂ MT ⊂ Mg ⊂ MC. (1)

Remark 1.1. If T is a maximal torus in the compact connected Lie group G and dimT = �, then

H ∗(BG) = H ∗(BT )WG = Q[u1, . . . , u�]WG,

where WG is the Weyl group of T in G. Thus, H ∗(BG) is an integral domain. Let Q be its field of fractions. For any
H ∗(BG)-module V , we define the localization of V with respect to the zero ideal in H ∗(BG) to be

V̂ := V ⊗H ∗(BG) Q.

It is easily verified that V is H ∗(BG)-torsion if and only if V̂ = 0. For a G-manifold M , we call Ĥ ∗
G(M) the localized

equivariant cohomology of M .

Lemma 1.2. Let M be a G-manifold and T a maximal torus of G. If H ∗
T (M) is H ∗(BT )-torsion, then H ∗

G(M) is
H ∗(BG)-torsion.

Proof. Recall that H ∗
G(M) is the subring of H ∗

T (M) consisting of the WG-invariant elements. Let ψ :H ∗
G(M) →

H ∗
T (M) be the inclusion ring homomorphism. Since H ∗

T (M) is H ∗(BT )-torsion, there is a ∈ H ∗(BT ) such that
a · 1H ∗

T (M) = 0. Consider the average of a over the Weyl group WG of T in G,

ã = 1

|WG| (a + ω1a + · · · + ωra) ∈ H ∗(BG).

Under ψ , the element ã · 1H ∗
G(M) goes to

1

|WG| (ω1a + · · · + ωra)1H ∗
T (M).

But (ωja)1H ∗
T (M) = ωj (a1H ∗

T (M)) = 0 for any j . Thus ã · 1H ∗
G(M) = 0 in H ∗

G(M). �
Proposition 1.3. Let G be a compact connected Lie group acting on a compact manifold M , and let C be a conjugacy
class in G. If U ⊂ M − MC is an open G-subset, then the equivariant cohomology H ∗

G(U) is H ∗(BG)-torsion.

Proof. It follows from (1) that U ⊂ M − MC ⊂ M − MT . Since the inclusion map U → M − MT is T -equivariant,
and H ∗

T (M − MT ) is H ∗(BT )-torsion by [9, Theorem 11.4.1], H ∗
T (U) is also H ∗(BT )-torsion. By Lemma 1.2,

H ∗ (U) is H ∗(BG)-torsion. �
G



A. Pedroza, L.W. Tu / Topology and its Applications 154 (2007) 1493–1501 1495
In the rest of this section, “torsion” will mean H ∗(BG)-torsion.

Theorem 1.4 (Borel-type localization formula for a conjugacy class). Let G be a compact connected Lie group acting
on a compact manifold M , and C a conjugacy class in G. Then the inclusion i :MC → M induces an isomorphism
in localized equivariant cohomology

i∗ : Ĥ ∗
G(M) → Ĥ ∗

G

(
MC

)
.

Proof. Let U be a G-invariant tubular neighborhood of MC . Then {U,M − MC} is a G-invariant open cover of M .
Moreover, H ∗

G(U) � H ∗
G(MC) because U has the G-homotopy type of MC .

By Proposition 1.3, H ∗
G(M − MC) and H ∗

G(U ∩ (M − MC)) are torsion. Then in the localized equivariant Mayer–
Vietoris sequence

· · · → Ĥ ∗−1
G

(
U ∩ (

M − MC
))

→ Ĥ ∗
G(M) → Ĥ ∗

G

(
M − MC

) ⊕ Ĥ ∗
G(U) → Ĥ ∗

G

(
U ∩ (

M − MC
)) → ·· · ,

all the terms except Ĥ ∗
G(M) and Ĥ ∗

G(U) are zero. It follows that

Ĥ ∗
G(M) → Ĥ ∗

G(U) � Ĥ ∗
G

(
MC

)
is an isomorphism of H ∗(BG)-modules. �

When the group is a torus T , a conjugacy class C consist of a single element t ∈ T . If t is generator, then the fixed
point set of t is the same as the fixed point set of the whole group T : MC = Mt = MT . In this case MC is smooth.
Thus Borel’s localization theorem follows from Theorem 1.4 by taking the conjugacy class C = {t} in T .

2. The equivariant Euler class

Suppose a compact connected Lie group G acts on a smooth compact manifold M . Let C be a conjugacy class in G,
and MC as before. From now on we assume that MC is smooth with oriented normal bundle. Denote by i :MC → M

the inclusion map and by eM ∈ H ∗
G(MC) the equivariant Euler class of the normal bundle of MC in M .

Proposition 2.1. Let M be a compact connected oriented G-manifold. Then the equivariant Euler class eM of the
normal bundle of MC in M is invertible in Ĥ ∗

G(MC).

Proof. Fix a G-invariant Riemannian metric on M . Then the normal bundle ν → MC is a G-equivariant vector
bundle. Let ν0 be the normal bundle minus the zero section. Since ν0 is equivariantly diffeomorphic to an open
set in M − MC , Ĥ ∗

G(ν0) vanishes by Proposition 1.3. From the Gysin long exact sequence in localized equivariant
cohomology

· · · → Ĥ ∗
G

(
ν0

) → Ĥ ∗
G

(
MC

) ×eM−→ Ĥ ∗
G

(
MC

) → Ĥ ∗
G(ν0) → ·· ·

it follows that multiplication by the equivariant Euler class gives an automorphism of Ĥ ∗
G(MC). Thus eM has an

inverse in the ring Ĥ ∗
G(MC). �

Recall that the inclusion map i :MC → M satisfies the identity

i∗i∗(x) = xeM, x ∈ H ∗
G(M)

in equivariant cohomology. In the localized equivariant cohomology Ĥ ∗
G(MC),

i∗i∗
i∗x
eM

= i∗x
eM

eM = i∗x.

By Theorem 1.4, i∗ is an isomorphism. Hence,
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i∗
(

i∗a
eM

)
= a (2)

for a ∈ Ĥ ∗
G(M).

3. Relative localization formula

Let N be a G-manifold, eN the equivariant Euler class of the normal bundle of NC , and f :M → N a G-equivariant
map. There is a commutative diagram of maps

MC
iM

f C

M

f

NC
iN

N

(3)

where iM and iN are inclusion maps and f C is the restriction of f to MC . Let

(fG)∗ : Ĥ ∗
G(M) → Ĥ ∗

G(N), f C∗ : Ĥ ∗
G

(
MC

) → Ĥ ∗
G

(
NC

)
be the push-forward maps in localized equivariant cohomology.

Theorem 3.1 (Relative localization formula). Let M and N be compact oriented manifolds on which a compact
connected Lie group G acts, and f :M → N a G-equivariant map. For a ∈ H ∗

G(M),

(fG)∗a = (i∗N)−1f C∗
(

(f C)∗eN

eM

i∗Ma

)

where the push-forward and restriction maps are in localized equivariant cohomology.

Proof. The commutative diagram (3), induces a commutative diagram in localized equivariant cohomology

Ĥ ∗
G(MC)

iM∗

f C∗

Ĥ ∗
G(M)

(fG)∗

Ĥ ∗
G(NC)

iN∗ Ĥ ∗
G(N)

(4)

By Eq. (2) and the commutativity of the diagram (4),

(fG)∗a = (fG)∗iM∗
(

1

eM

i∗Ma

)

= iN∗f C∗
(

1

eM

i∗Ma

)
.

Hence,

i∗N(fG)∗a = i∗NiN∗f C∗
(

1

eM

i∗Ma

)

= eNf C∗
(

1

eM

i∗Ma

)

= (
f C

)
∗

(
(f C)∗eN

eM

i∗Ma

)

since y · f C∗ (x) = f C∗ ((f C)∗(y) · x) for x ∈ H ∗
G(MC) and y ∈ H ∗

G(NC). By Theorem 1.4, i∗N is an isomorphism in
localized equivariant cohomology,

(fG)∗a = (i∗N)−1(f C
)
∗

(
(f C)∗eN

i∗Ma

)
. �
eM
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If in Theorem 3.1 we take the group G to be a torus T and the conjugacy class C to be the conjugacy class of a
generator t for T , then MC = Mt = MT and Theorem 3.1 specializes to the following formula of Lian et al. [10].

Corollary 3.2 (Relative localization formula for a torus action). Let M and N be manifolds on which a torus T acts,
and f :M → N a T -equivariant map with compact oriented fibers. For a ∈ Ĥ ∗

T (M),

(fT )∗a = (i∗N)−1(f T
)
∗

(
(f T )∗eN

eM

i∗Ma

)
,

where the push-forward and restriction maps are in localized equivariant cohomology.

When N is a single point, Corollary 3.2 reduces to the Atiyah–Bott–Berline–Vergne localization formula.

4. Applications to the Gysin homomorphism in ordinary cohomology

Let G be a compact connected Lie group acting on a manifold M . Denote by MG the homotopy quotient of M

by G, and by MG the fixed point set of the action of G on M . Let hM :M → MG be the inclusion of M as a fiber
of the bundle MG → BG and iM :MG → M the inclusion of the fixed point set MG in M . The map hM induces a
homomorphism in cohomology

h∗
M :H ∗

G(M) → H ∗(M).

The inclusion iM induces a homomorphism in equivariant cohomology

i∗M :H ∗
G(M) → H ∗

G

(
MG

)
.

A cohomology class a ∈ H ∗(M) is said to have an equivariant extension ã ∈ H ∗
G(M) under the G action if under

the restriction map h∗
M :H ∗

G(M) → H ∗(M), the equivariant class ã restricts to a.
Suppose f :M → N is a G-equivariant map of compact oriented G-manifolds. In this section we show that if a

class in H ∗(M) has an equivariant extension, then its image under the Gysin map f∗ :H ∗(M) → H ∗(N) in ordinary
cohomology can be computed from the relative localization formulas (Corollary 3.2 or Theorem 3.1).

We consider first the case of an action by a torus T . Let fT :MT → NT be the induced map of homotopy quotients
and f T :MT → NT the induced map of fixed point sets. As before, eM denotes the equivariant Euler class of the
normal bundle of the fixed point set MT in M .

Proposition 4.1. Let f :M → N be a T -equivariant map of compact oriented T -manifolds. If a cohomology class
a ∈ H ∗(M) has an equivariant extension ã ∈ H ∗

T (M), then its image under the Gysin map f∗ :H ∗(M) → H ∗(N) is,

(1) in terms of equivariant integration over M :

f∗a = h∗
NfT ∗ã,

(2) in terms of equivariant integration over the fixed point set MT :

f∗a = h∗
N(i∗N)−1(f T

)
∗

(
(f T )∗eN

eM

i∗Mã

)
.

Proof. The inclusions hM :M → MT and hN :N → NT fit into a commutative diagram

M
hM

f

MT

fT

N
hN

NT

This diagram is Cartesian in the sense that M is the inverse image of N under fT . Hence, the push-pull formula
f∗h∗

M = h∗
NfT ∗ holds. Then

f∗a = f∗h∗ ã = h∗ fT ∗ã.
M N
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(2) follows from (1) and the relative localization formula for a torus action (Corollary 3.2). �
Using the relative localization formula for a conjugacy class, one obtains analogously a push-forward formula in

terms of the fixed point sets of a conjugacy class. Now hM and iM are the inclusion maps

hM :M → MG, iM :MC → M,

eM is the equivariant Euler class of the normal bundle of MC in M , and f C :MC → NC is the induced map on the
fixed point sets of the conjugacy class C.

Proposition 4.2. Let f :M → N be a G-equivariant map of compact oriented G-manifolds. Assume that the fixed
point sets MC and NC are smooth with oriented normal bundle. For a class a ∈ H ∗(M) that has an equivariant
extension ã ∈ H ∗

G(M),

f∗a = h∗
N(i∗N)−1(f C

)
∗

(
(f C)∗eN

eM

i∗Mã

)
.

5. Example: the Gysin homomorphism of flag manifolds

Let G be a compact connected Lie group with maximal torus T , and H a closed subgroup of G containing T . In [1]
Akyildiz and Carrell compute the Gysin homomorphism for the canonical projection f :G/T → G/H . In this section
we deduce the formula of Akyildiz and Carrell from the relative localization formula in equivariant cohomology.

Let NG(T ) be the normalizer of the torus T in the group G. The Weyl group WG of T in G is WG = NG(T )/T .
We use the same letter w to denote an element of the Weyl group WG and a lift of the element to the normalizer
NG(T ). The Weyl group WG acts on G/T by

(gT )w = gwT for gT ∈ G/T and w ∈ WG.

This induces an action of WG on the cohomology ring H ∗(G/T ).
We may also consider the Weyl group WH of T in H . By restriction the Weyl group WH acts on G/T and on

H ∗(G/T ).
To each character γ of T with representation space Cγ , one associates a complex line bundle

Lγ := G ×T Cγ

over G/T . Fix a set Δ+(H) of positive roots for T in H , and extend Δ+(H) to a set Δ+ of positive roots for T in G.

Theorem 5.1. [1] The Gysin homomorphism f∗ :H ∗(G/T ) → H ∗(G/H) is given by, for a ∈ H ∗(G/T ),

f∗a =
∑

w∈WH
(−1)ww · a∏

α∈Δ+(H) c1(Lα)
.

Remark 5.2. There are two other ways to obtain this formula. First, using representation theory, Brion [5] proves a
push-forward formula for flag bundles that includes Theorem 5.1 as a special case. Secondly, since G/T → G/H is
a fiber bundle with equivariantly formal fibers, the method of [12] using the ABBV localization theorem also applies.

To deduce Theorem 5.1 from Proposition 4.1 we need to recall a few facts about the cohomology and equivariant
cohomology of G/T and G/H (see [12]).

5.1. Cohomology ring of BT

Let ET → BT be the universal principal T -bundle. To each character γ of T , one associates a complex line bundle
Sγ over BT and a complex line bundle Lγ over G/T :

Sγ := ET ×T Cγ , Lγ := G ×T Cγ .
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For definiteness, fix a basis χ1, . . . , χ� for the character group T̂ , where we write the characters additively, and set

ui = c1(Sχi
) ∈ H 2(BT ), zi = c1(Lχi

) ∈ H 2(G/T ).

Let R = Sym(T̂ ) be the symmetric algebra over Q generated by T̂ . The map γ 
→ c1(Sγ ) induces an isomorphism

R = Sym(T̂ ) → H ∗(BT ) = Q[u1, . . . , u�].
The map γ 
→ c1(Lγ ) induces an isomorphism

R = Sym(T̂ ) → Q[z1, . . . , z�].
The Weyl groups WG and WH act on the characters of T and hence on R: for w ∈ WG and γ ∈ T̂ ,

(w · γ )(t) = γ
(
w−1tw

)
.

5.2. Cohomology rings of flag manifolds

The cohomology rings of G/T and G/H are described in [4]:

H ∗(G/T ) � R

(R
WG+ )

� Q[z1, . . . , z�]
(R

WG+ )
,

H ∗(G/H) � RWH

(R
WG+ )

� Q[z1, . . . , z�]WH

(R
WG+ )

,

where (R
WG+ ) denotes the ideal generated by the WG-invariant homogeneous polynomials of positive degree.

The torus T acts on G/T and G/H by left multiplication. For each character χ of T , let Kχ := (Lχ)T be the
homotopy quotient of the bundle Lχ by the torus T . Then Kχ is a complex line bundle over (G/T )T . Their equivariant
cohomology rings are (see [12])

H ∗
T (G/T ) = Q[u1, . . . , u�, y1, . . . , y�]

J
,

H ∗
T (G/H) = Q[u1, . . . , u�] ⊗ (Q[y1, . . . , y�]WH )

J
,

where yi = c1(Kχi
) ∈ H ∗

T (G/T ) and J denotes the ideal generated by q(y) − q(u) for q ∈ R
WG+ .

5.3. Fixed point sets

The fixed point sets of the T -action on G/T and on G/H are the Weyl group WG and the coset space WG/WH

respectively. Since these are finite sets of points,

H ∗
T (WG) =

⊕
w∈WG

H ∗
T

({w}) �
⊕

w∈WG

R,

H ∗
T (WG/WH ) =

⊕
wWH ∈WG/WH

R.

Thus, we may view an element of H ∗
T (WG) as a function from WG to R, and an element of H ∗

T (WG/WH ) as a
function from WG/WH to R.

Let hM :M → MT be the inclusion of M as a fiber in the fiber bundle MT → BT and iM :MT → M the inclusion
of the fixed point set MT in M . Note that iM is T -equivariant and induces a homomorphism in T -equivariant coho-
mology, i∗M :H ∗

T (M) → H ∗
T (MT ). In order to apply Proposition 4.1, we need to know how to calculate the restriction

maps

h∗
M :H ∗

T (M) → H ∗(M) and i∗M :H ∗
T (M) → H ∗

T

(
MT

)
as well as the equivariant Euler class eM of the normal bundle to the fixed point set MT , for M = G/T and G/H .
This is done in [12].
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5.4. Restriction and equivariant Euler class formulas for G/T

Since h∗
M :H ∗

T (M) → H ∗(M) is the restriction to a fiber of the bundle MT → BT , and the bundle Kχi
= (Lχi

)T
on MT pulls back to Lχi

on M ,

h∗
M(ui) = 0, h∗

M(yi) = h∗
M

(
c1(Kχi

)
) = c1(Lχi

) = zi . (5)

Let iw : {w} → G/T be the inclusion of the fixed point w ∈ WG and

i∗w :H ∗
T (G/T ) → H ∗

T

({w}) = R

the induced map in equivariant cohomology. By [12], for p(y) ∈ H ∗
T (G/T ),

i∗wui = ui, i∗wp(y) = w · p(u), i∗wc1(Kγ ) = w · c1(Sγ ). (6)

Thus, the restriction of p(y) to the fixed point set WG is the function i∗Mp(y) :WG → R whose value at w ∈ WG is(
i∗Mp(y)

)
(w) = w · p(u). (7)

The equivariant Euler class of the normal bundle to the fixed point set WG assigns to each w ∈ WG the equivariant
Euler class of the normal bundle νw at w; thus, it is also a function eM :WG → R. By [12],

eM(w) = eT (νw) = w

( ∏
α∈Δ+

c1(Sα)

)
= (−1)w

∏
α∈Δ+

c1(Sα). (8)

5.5. Restriction and equivariant Euler class formulas for G/H

For the manifold M = G/H , the formulas for the restriction maps h∗
N and i∗N are the same as in (5) and (6), except

that now the polynomial p(y) must be WH -invariant. In particular,

h∗
N(ui) = 0, h∗

Np(y) = p(z), h∗
N

(
c1(Kγ )

) = c1(Lγ ), (9)

and (
i∗Np(y)

)
(wWH ) = w · p(u). (10)

If γ1, . . . , γm are characters of T such that p(c1(Kγ1), . . . , c1(Kγm)) is invariant under the Weyl group WH , then(
i∗Np

(
c1(Kγ1), . . . , c1(Kγm)

))
(wWH ) = w · p(

c1(Sγ1), . . . , c1(Sγm)
)
. (11)

The equivariant Euler class of the normal bundle of the fixed point set WG/WH is the function eN :WG/WH → R

given by

eN(wWH ) = w ·
( ∏

α∈Δ+−Δ+(H)

c1(Sα)

)
. (12)

Proof of Theorem 5.1. With M = G/T and N = G/H in Proposition 4.1, let

p(z) ∈ H ∗(G/T ) = Q[z1, . . . , z�]/
(
R

WG+
)
.

It is the image of p(y) ∈ H ∗
T (G/T ) under the restriction map h∗

M : H ∗
T (G/T ) → H ∗(G/T ). By Proposition 4.1,

f∗p(z) = f∗h∗
Mp(y) = h∗

NfT ∗p(y) (13)

and

fT ∗p(y) = (i∗N)−1(f T
)
∗

(
(f T )∗eN

eM

i∗Mp(y)

)
.

By Eqs. (7), (8), and (12), for w ∈ WG,(
i∗Mp(y)

)
(w) = i∗wp(y) = w · p(u),

and
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(
(f T )∗eN

eM

)
(w) = eN(wWH )

eM(w)
= w ·

(∏
α∈Δ+−Δ+(H) c1(Sα)∏

α∈Δ+ c1(Sα)

)

= 1

w · (∏α∈Δ+(H) c1(Sα))
.

To simplify the notation, define temporarily the function k :WG → R by

k(w) = w ·
(

p(u)∏
α∈Δ+(H) c1(Sα)

)
.

Then

fT ∗p(y) = (i∗N)−1(f T
)
∗(k). (14)

Now (f T )∗(k) ∈ H ∗
T (WG/WH ) is the function: WG/WH → R whose value at the point wWH is obtained by

summing k over the fiber of f T :WG → WG/WH above wWH . Hence,

((
f T

)
∗k

)
(wWH ) =

∑
wv∈wWH

wv ·
(

p(u)∏
α∈Δ+(H) c1(Sα)

)

= w ·
∑

v∈WH

v ·
(

p(u)∏
α∈Δ+(H) c1(Sα)

)
.

By (11), the inverse image of this expression under i∗N is

(i∗N)−1(f T
)
∗k =

∑
v∈WH

v ·
(

p(y)∏
α∈Δ+(H) c1(Kα)

)
. (15)

Finally, combining (13), (14), (15) and (9),

f∗p(z) = h∗
N(fT )∗p(y) =

∑
v∈WH

v ·
(

p(z)∏
α∈Δ+(H) c1(Lα)

)
. �
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