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Abstract

We give a generalization of the Atiyah—Bott—Berline—Vergne localization theorem for the equivariant cohomology of a torus
action. We replace the manifold having a torus action by an equivariant map of manifolds having a compact connected Lie group
action. This provides a systematic method for calculating the Gysin homomorphism in ordinary cohomology of an equivariant
map. As an example, we recover a formula of Akyildiz—Carrell for the Gysin homomorphism of flag manifolds.
© 2006 Elsevier B.V. All rights reserved.
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Suppose M is a compact oriented manifold on which a torus 7" acts. The Atiyah—Bott—Berline—Vergne localization
formula calculates the integral of an equivariant cohomology class on M in terms of an integral over the fixed point
set MT. This formula has found many applications, for example, in analysis, topology, symplectic geometry, and
algebraic geometry (see [2,6,8,12]). Similar, but not entirely analogous, formulas exist in K-theory [3], cobordism
theory [11], and algebraic geometry [7].

Taking cues from the work of Atiyah and Segal in K -theory [3], we state and prove a localization formula for a
compact connected Lie group action in terms of the fixed point set of a conjugacy class in the group. As an application,
the formula can be used to calculate the Gysin homomorphism in ordinary cohomology of an equivariant map. For
a compact connected Lie group G with maximal torus 7 and a closed subgroup H containing 7', we work out as an
example the Gysin homomorphism of the canonical projection f:G/T — G/H, a formula first obtained by Akyildiz
and Carrell [1].

The application to the Gysin map in this article complements that of [12]. The previous article [12] shows how to
use the ABBV localization formula to calculate the Gysin map of a fiber bundle. This article shows how to use the
relative localization formula to calculate the Gysin map of an equivariant map.
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1. Borel-type localization formula for a conjugacy class

Suppose a compact connected Lie group G acts on a manifold M. For g € G, define M8 to be the fixed point set
of g:
M8={xeM|g x=x}.
The set M8 is not G-invariant. The G-invariant subset it generates is

Un-(me) =M = | ) M*

heG heG keC(g)

where C(g) is the conjugacy class of g. This suggests that for every conjugacy class C in G, we consider the set M€
of elements of M that are fixed by at least one element of the conjugacy class C:

M =M.
keC

Then M€ is a closed G-subset of M [3, footnote 1, p. 532]; however it may not be always smooth. From now on we
make the assumption that M is smooth.

Suppose C = C(g) is the conjugacy class of an element g in G. Let T be a maximal torus of 7' containing g. Then
we have the following inclusions of fixed-point sets:

MC cM” c M8 c M€ (1)

Remark 1.1. If T is a maximal torus in the compact connected Lie group G and dim 7' = ¢, then
H*(BG)=H*(BT)"¢ =Q[u, ..., u"°,
where W is the Weyl group of T in G. Thus, H*(BG) is an integral domain. Let Q be its field of fractions. For any
H*(BG)-module V, we define the localization of V with respect to the zero ideal in H*(BG) to be
V=V ®H*BG) O-

It is easily verified that V is H*(BG)-torsion if and only if V = 0. For a G-manifold M, we call H & (M) the localized
equivariant cohomology of M.

Lemma 1.2. Let M be a G-manifold and T a maximal torus of G. If Hy(M) is H*(BT)-torsion, then H(M) is
H*(BG)-torsion.

Proof. Recall that Hé(M ) is the subring of H}"(M ) consisting of the Wg-invariant elements. Let i : H(*Ji M) —
HZ(M) be the inclusion ring homomorphism. Since Hj (M) is H*(BT)-torsion, there is a € H*(BT) such that
a - 1) = 0. Consider the average of a over the Weyl group W¢ of T in G,

a= (a +wia+---+wra) € H(BG).

1
Wl
Under v, the element a - 1 HE (M) 0€s to

1
——(wra+---+owra)l g=un-
|WG|(wl r@) 1 ()
But (wja)lH;(M) = a)j(aly;(M)) =0 for any j. Thus a - IHE‘;(M) =0in HE(M) O

Proposition 1.3. Let G be a compact connected Lie group acting on a compact manifold M, and let C be a conjugacy
class in G. If U C M — M€ is an open G-subset, then the equivariant cohomology HE(U) is H*(BG)-torsion.

Proof. It follows from (1) that U ¢ M — M€ c M — MT . Since the inclusion map U — M — M7 is T-equivariant,
and Hj (M — MT) is H*(BT)-torsion by [9, Theorem 11.4.1], H7(U) is also H*(BT)-torsion. By Lemma 1.2,
HE(U) is H*(BG)-torsion. O
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In the rest of this section, “torsion” will mean H*(BG)-torsion.

Theorem 1.4 (Borel-type localization formula for a conjugacy class). Let G be a compact connected Lie group acting
on a compact manifold M, and C a conjugacy class in G. Then the inclusion i : M€ — M induces an isomorphism
in localized equivariant cohomology

i* HE (M) — HE(MC).

Proof. Let U be a G-invariant tubular neighborhood of M€. Then {U, M — M€} is a G-invariant open cover of M.
Moreover, Hf,(U) ~ H, (M €) because U has the G-homotopy type of MC.
By Proposition 1.3, Hz; (M — M€) and H&“; (U N (M — M©)) are torsion. Then in the localized equivariant Mayer—
Vietoris sequence
fx—1 c
o> HEH(UN (M- M)
— HE (M) — HE(M — MC) @ AL (U) — AE(UN (M - M€)) — -,

all the terms except I-AIC*; (M) and I-AIE*;(U ) are zero. It follows that

HE (M) — HEWU) ~ HE(MC)

is an isomorphism of H*(BG)-modules. 0O

When the group is a torus 7', a conjugacy class C consist of a single element ¢ € T'. If ¢ is generator, then the fixed
point set of 7 is the same as the fixed point set of the whole group 7: M€ = M' = M” . In this case M€ is smooth.
Thus Borel’s localization theorem follows from Theorem 1.4 by taking the conjugacy class C ={¢} in T.

2. The equivariant Euler class

Suppose a compact connected Lie group G acts on a smooth compact manifold M. Let C be a conjugacy classin G,
and M€ as before. From now on we assume that M is smooth with oriented normal bundle. Denote by i : M€ — M
the inclusion map and by ey € Hj (M €) the equivariant Euler class of the normal bundle of M€ in M.

Proposition 2.1. Let M be a compact connected oriented G-manifold. Then the equivariant Euler class ey of the
normal bundle of M€ in M is invertible in HE (M©).

Proof. Fix a G-invariant Riemannian metric on M. Then the normal bundle v — M€ is a G-equivariant vector
bundle. Let vy be the normal bundle minus the zero section. Since vy is equivariantly diffeomorphic to an open
setin M — M€, 1:13 (vo) vanishes by Proposition 1.3. From the Gysin long exact sequence in localized equivariant
cohomology

Xepm

RN ﬁé(vo) — I:Ié(MC) == I:Ié(MC) — HE(vp) = ---

it follows that multiplication by the equivariant Euler class gives an automorphism of I:I(’;(M €). Thus ey has an
inverse in the ring lfl(*; M. O

Recall that the inclusion map i : M€ — M satisfies the identity
i*iy(x) =xeym, x€HSG(M)
in equivariant cohomology. In the localized equivariant cohomology I-AIE (M),
*x  i*x
iiy— = —ey =i*x.
em epm

By Theorem 1.4, i* is an isomorphism. Hence,
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(i*a
x| —)=a (2
em
for a € H:(M).

3. Relative localization formula

Let N be a G-manifold, ey the equivariant Euler class of the normal bundle of N€, and f: M — N a G-equivariant
map. There is a commutative diagram of maps

MCLM

! Cl lf 3)

NE— N

where ij; and iy are inclusion maps and f€ is the restriction of f to M€. Let
(f6): HE(M) — HE(N), fEAE(MC) — AE(NC)

be the push-forward maps in localized equivariant cohomology.

Theorem 3.1 (Relative localization formula). Let M and N be compact oriented manifolds on which a compact
connected Lie group G acts, and f: M — N a G-equivariant map. For a € H} (M),

(fc)*ezvl.* )
em

Ma

(fo)sa = (i)™ ff(
where the push-forward and restriction maps are in localized equivariant cohomology.
Proof. The commutative diagram (3), induces a commutative diagram in localized equivariant cohomology
HE (M) == HE(M)
f*cl i(fc)* 4)
HE(NC) ——= H5(N)
By Eq. (2) and the commutativity of the diagram (4),

1
(fG)*a=(fG)*iM*< ;t/[a)

—i
em
‘ C( 1 g )
=insfo | —iya].
em
Hence,
. v L
iy(fo)wa =iyins fE <—l7\}a>
em
=enf, | —iya
em
CH*
__(«C (f*)*en %
= (7). (L i)

since y - £C(x) = fEW(fO)*(y) - x) for x € HE(MC) and y € Hé(NC). By Theorem 1.4, i, is an isomorphism in
localized equivariant cohomology,

(fC>*eNl.* )
em

Ma .

(fo)wa = (i;rl(fc)*(
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If in Theorem 3.1 we take the group G to be a torus 7 and the conjugacy class C to be the conjugacy class of a
generator ¢ for T, then M¢ = M' = MT and Theorem 3.1 specializes to the following formula of Lian et al. [10].

Corollary 3.2 (Relative localization formula for a torus action). Let M and N be manifolds on which a torus T acts,
and f:M — N a T-equivariant map with compact oriented fibers. For a € H}.(M),

T \*
1y [ () en .
(fT)*a:(l;:/) (f )*<71I4a>,
where the push-forward and restriction maps are in localized equivariant cohomology.
When N is a single point, Corollary 3.2 reduces to the Atiyah—Bott—Berline—Vergne localization formula.
4. Applications to the Gysin homomorphism in ordinary cohomology

Let G be a compact connected Lie group acting on a manifold M. Denote by Mg the homotopy quotient of M
by G, and by MC the fixed point set of the action of G on M. Let hy : M — Mg be the inclusion of M as a fiber
of the bundle Mg — BG and iy : M® — M the inclusion of the fixed point set MC in M. The map hj; induces a
homomorphism in cohomology

hy  HG (M) — H*(M).
The inclusion iy induces a homomorphism in equivariant cohomology
iv HG(M) — HE(MO).

A cohomology class a € H*(M) is said to have an equivariant extension a € H,(M) under the G action if under
the restriction map hy, : Hi;(M) — H*(M), the equivariant class a restricts to a.

Suppose f: M — N is a G-equivariant map of compact oriented G-manifolds. In this section we show that if a
class in H*(M) has an equivariant extension, then its image under the Gysin map f,: H*(M) — H*(N) in ordinary
cohomology can be computed from the relative localization formulas (Corollary 3.2 or Theorem 3.1).

We consider first the case of an action by a torus T'. Let f7: M7 — N be the induced map of homotopy quotients
and fT: M7 — NT the induced map of fixed point sets. As before, ej; denotes the equivariant Euler class of the
normal bundle of the fixed point set M7 in M.

Proposition 4.1. Let f: M — N be a T -equivariant map of compact oriented T -manifolds. If a cohomology class
a € H*(M) has an equivariant extension a € H} (M), then its image under the Gysin map f,: H*(M) — H*(N) is,

(1) in terms of equivariant integration over M:
fra= hT\/ frsa,

(2) in terms of equivariant integration over the fixed point set M :
e (fT)*en . -
fra=hy (%) l(fT)* <71}f4a .
em
Proof. The inclusions A : M — Mt and hy : N — Nr fit into a commutative diagram

M%MT

I

N ——Nr
hn

This diagram is Cartesian in the sense that M is the inverse image of N under fr. Hence, the push-pull formula
fahyy = hy frs holds. Then

fra = f*h#/;/IEl :hfva*&-
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(2) follows from (1) and the relative localization formula for a torus action (Corollary 3.2). O

Using the relative localization formula for a conjugacy class, one obtains analogously a push-forward formula in
terms of the fixed point sets of a conjugacy class. Now h s and iy, are the inclusion maps

hy M — Mg, iM:MC—>M,

ey is the equivariant Euler class of the normal bundle of M€ in M, and f€: M — N€ is the induced map on the
fixed point sets of the conjugacy class C.

Proposition 4.2. Let f: M — N be a G-equivariant map of compact oriented G-manifolds. Assume that the fixed
point sets M € and N€ are smooth with oriented normal bundle. For a class a € H*(M) that has an equivariant
extension a € H, (M),

CH*
fua= %(i;rl(fC)*(Mim).

em

5. Example: the Gysin homomorphism of flag manifolds

Let G be a compact connected Lie group with maximal torus 7', and H a closed subgroup of G containing 7. In [1]
Akyildiz and Carrell compute the Gysin homomorphism for the canonical projection f: G/T — G/H. In this section
we deduce the formula of Akyildiz and Carrell from the relative localization formula in equivariant cohomology.

Let NG (T) be the normalizer of the torus T in the group G. The Weyl group Wg of T in G is Wg = Ng(T)/T.
We use the same letter w to denote an element of the Weyl group W and a lift of the element to the normalizer
Ng(T). The Weyl group Wi acts on G/ T by

gT)w=gwT forgT €eG/T and w € Wg.

This induces an action of W on the cohomology ring H*(G/T).
We may also consider the Weyl group Wy of T in H. By restriction the Weyl group Wy acts on G/T and on
H*(G/T).
To each character y of T with representation space C,,, one associates a complex line bundle
L,:=GxrC,

over G/T. Fix a set A*(H) of positive roots for T in H, and extend AT (H) to a set A of positive roots for T in G.

Theorem 5.1. [1] The Gysin homomorphism f,: H*(G/T) — H*(G/H) is given by, fora € H*(G/T),

Dwew, (—D"w-a
[Tecarancr(Le)

Sfra=

Remark 5.2. There are two other ways to obtain this formula. First, using representation theory, Brion [5] proves a
push-forward formula for flag bundles that includes Theorem 5.1 as a special case. Secondly, since G/T — G/H is
a fiber bundle with equivariantly formal fibers, the method of [12] using the ABBV localization theorem also applies.

To deduce Theorem 5.1 from Proposition 4.1 we need to recall a few facts about the cohomology and equivariant
cohomology of G/T and G/H (see [12]).

5.1. Cohomology ring of BT

Let ET — BT be the universal principal T-bundle. To each character y of T', one associates a complex line bundle
S, over BT and a complex line bundle L, over G/T:

Sy =ET XT(C)/, Ly :ZGXTCy.
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For definiteness, fix a basis 1, ..., x¢ for the character group T, where we write the characters additively, and set
ui =ci(Sy,) € HX(BT),  zi=ci(Ly) e H*(G/T).

Let R = Sym(f”) be the symmetric algebra over Q generated by T.The map y > ¢1(Sy) induces an isomorphism
R=Sym(T) — H*(BT) = Qlui, ..., ul.

The map y + c1(L,) induces an isomorphism
R =Sym(T) — Qlz1, ..., zl.

The Weyl groups W and Wy act on the characters of 7" and hence on R: for w € W and y € T,
(w-y)@t)= y(w_ltw).

5.2. Cohomology rings of flag manifolds

The cohomology rings of G/T and G/H are described in [4]:
R Qlzi, ...,z

H*(G/T) ~ ~
@ (RY9) (RY)
RWH oz
(RY) (RY)

where (RXYG) denotes the ideal generated by the Wg-invariant homogeneous polynomials of positive degree.

The torus T acts on G/T and G/H by left multiplication. For each character x of T, let K, := (L, )7 be the
homotopy quotient of the bundle L, by the torus T'. Then K is a complex line bundle over (G/T)7. Their equivariant
cohomology rings are (see [12])

Qluy, ... ue, y1,..., yel
] b
Qlut, ..., ugl ® (QLy1, ..., ye V)
J b
where y; =c1(K,;) € H;f(G/T) and J denotes the ideal generated by g (y) — g (u) for g € R_,VYG.

H{}(G/T)=

H}(G/H) =

5.3. Fixed point sets

The fixed point sets of the T-action on G/T and on G/H are the Weyl group W and the coset space Wg/ Wy
respectively. Since these are finite sets of points,

Hy(Wa) = D Hi(lw))= P R.
weWg weWg
HiWe/Wim)= @ R
wWHGWG/WH

Thus, we may view an element of H;(Wg) as a function from Wg to R, and an element of H;(Wg/ Wg) as a
function from Wg/Wg to R.

Let hpr: M — My be the inclusion of M as a fiber in the fiber bundle M7 — BT and iy : M7 — M the inclusion
of the fixed point set MT in M. Note that i, is T-equivariant and induces a homomorphism in 7'-equivariant coho-
mology, iy, : Hf (M) — H7 (M Ty In order to apply Proposition 4.1, we need to know how to calculate the restriction
maps

Wyt HY (M) — H*(M) and i} Hf (M) — Hf(M")

as well as the equivariant Euler class ej; of the normal bundle to the fixed point set M”, for M = G/T and G/H.
This is done in [12].
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5.4. Restriction and equivariant Euler class formulas for G/ T
Since hy, : Hy (M) — H*(M) is the restriction to a fiber of the bundle M7 — BT, and the bundle K, = (Ly,)r
on M7 pulls back to L,, on M,
Iy (ui) =0, O =hy(c1(Ky))=ci(Ly) =z. ()
Let iy : {w} — G/T be the inclusion of the fixed point w € W and
it Hf(G/T)— Hf({w}) =R
the induced map in equivariant cohomology. By [12], for p(y) € H7(G/T),

Ui = U, inp(y)=w-pu), inei(Ky)=w-ci(Sy). (6)
Thus, the restriction of p(y) to the fixed point set W is the function iy, p(y) : Wg — R whose value at w € Wg is
(i pO)w) =w- pu). @)

The equivariant Euler class of the normal bundle to the fixed point set W assigns to each w € W the equivariant
Euler class of the normal bundle v,, at w; thus, it is also a function ey : Wg — R. By [12],

eM(w>=eT(vw)=w< 11 c1<sa>) =(=D" ] ei(So). ®)

acAt acAt

5.5. Restriction and equivariant Euler class formulas for G/H

For the manifold M = G/H , the formulas for the restriction maps 47, and iy, are the same as in (5) and (6), except
that now the polynomial p(y) must be Wg-invariant. In particular,

hy(u;) =0, hyp(y) = p(2), Iy (c1(Ky)) =ci(Ly), )
and
(i% D)) WWr) = w - p(u). (10)
If y1, ..., ¥ are characters of T such that p(c1(Ky,), ..., c1(K,,)) is invariant under the Weyl group Wy, then
(i,*{,p(cl(Kyl), cee, cl(Kym)))(wWH) =w- p(cl(Syl), cee, cl(Sym)). (11)

The equivariant Euler class of the normal bundle of the fixed point set W/ Wy is the function ey : Wg/ Wy — R
given by

eN(wWH>=w-( I1 cl(sa)). (12)

Q€A+ —A*(H)
Proof of Theorem 5.1. With M = G/T and N = G/H in Proposition 4.1, let
p@) € H(G/T) =Qlz1.....20)/(RY°).
It is the image of p(y) € H}(G/T) under the restriction map h}, : H7(G/T) — H*(G/T). By Proposition 4.1,
fep(@) = fihy p(9) = hy frsp(y) (13)

and

T\*
frep() =GN (fT), (Uceﬂi}bp(y))
By Egs. (7), (8), and (12), for w € W,

(i pM) ) =iy p(y) =w- pu),

and
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((fT)*€N>(w) _enwWr) _ - <HaeA+A+(H) Cl(Sot)>
ey ey (w) [Tyenr c1(Sa)
1

~w- ([Tyeat ) €1Sa)
To simplify the notation, define temporarily the function k: Wg — R by

p(u) )
kw)=w- (=P )
(w)=1w (HQGAJr(H)Cl(SDt)

Then

frap =G~ (), k). (14)

Now (7). (k) € H}(Wg/Wp) is the function: Wg/ Wy — R whose value at the point wWy is obtained by
summing k over the fiber of f T -Wg— Wg /Wy above wWpg. Hence,

(7)) @Wm = Y wo- (&)

woewWy aeAt(H) c1(Sa)

:w.zv.(n¢>_

R ae AT (H) c1(Se)

By (11), the inverse image of this expression under i%; is

velly aeat(H) €1(Ka)

Finally, combining (13), (14), (15) and (9),

fep (@) = T\J(fT)*p(y): Z v- <1_[ p(2) > 5

veWy ac A+ (H) c1(Ly)
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